spring

简介

Spring框架是一个开放源代码的J2EE应用程序框架,由Rod Johnson发起,是针对bean的生命周期进行管理的轻量级容器(lightweight container)。 Spring解决了开发者在J2EE开发中遇到的许多常见的问题,提供了功能强大IOC、AOP及Web MVC等功能。Spring可以单独应用于构筑应用程序,也可以和Struts、Webwork、Tapestry等众多Web框架组合使用,并且可以与 Swing等桌面应用程序AP组合。因此, Spring不仅仅能应用于J2EE应用程序之中,也可以应用于桌面应用程序以及小应用程序之中。

目的:解决企业应用开发的复杂性。

2004年3月24日,Spring框架以interface21框架为基础,经过重新设计,发布了1.0正式版。

理念:使现有的技术更加容易使用,本身就是一个大杂烩,整合了现有技术框架。

Rod Johnson,Java和J2EE开发领域的专家。Spring框架的创始人,同时也是SpringSource的联合创始人。Spring是面向切面编程(AOP)和控制反转(IOC)的容器框架。

“轮子理论”,也即“不要重复发明轮子”,这是西方国家的一句谚语。

总结一句话: Spring就是一个轻量级的控制反转(IOC)和面向切面编程(AOP)的框架!

优点

  1. spring是一个开源免费的框架(容器)。
  2. 轻量级、非入侵式的框架(非入侵即引入spring后不会给代码带来任何变化)。
  3. 控制反转(IOC)(Inversion of Control)、面向切面编程(AOP)。
  4. 支持事务处理,对框架整合的支持。
<!-- https://mvnrepository.com/artifact/org.springframework/spring-webmvc -->
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
<version>5.2.0.RELEASE</version>
</dependency>

组成

Spring 由七大模块组成,分别是Spring 核心容器(Spring Core)、应用上下文(Spring Context)、Spring面向切面编程(Spring AOP)、JDBC和DAO模块(Spring DAO)、对象实体映射(Spring ORM)、Web模块(Spring Web)以及MVC模块(SpringWebMVC)。其框架结构如下图所示:

每个模块的功能如下:

1、核心容器(Spring Core)

核心容器提供Spring框架的基础功能。Spring以bean的方式进行java应用的各大组件及关系的组织和管理。Spring使用BeanFactory来产生和管理bean,是工厂模式的实现。BeanFactory使用控制反转(IOC)模式来将应用的配置和依赖性规范与实际的应用程序代码分开。

2、应用上下文(Spring Context)

实现了ApplicationContext接口,Spring的上下文,拓展了核心容器,提供事件处理、国际化等功能。它还提供了一些企业级服务的功能,提供了JNDI、EJB、RMI的支持。

3、Spring面向切面编程(Spring AOP)

提供切面支持,是个轻量级的容器。Spring管理的任何对象都支持AOP,SpringAOP模块基于Spring的应用程序中的对象提供了事务管理服务,通过使用SpringAOP,就可以将声明性事务管理集成在应用程序中。

4、JDBC和DAO模块(Spring DAO)

提供对JDBC的支持,还提供了DAO的支持,提供事务支持。

JDBC、DAO的抽象层,提供了有意义的异常层次结构实现,可用该结构来管理异常处理,和不同数据库提供商抛出的错误信息,异常层次结构简化了错误处理,并且极大的降低了需要编写的代码数量,比如打开和关闭链接。

5、对象实体映射(Spring ORM)

ORM:Object Relational Mapping,指对象实体映射。Spring插入了若干个ORM框架,提供了ORM对象的关系工具,其中包括Hibernate,JDO和IBatisSQL Map等,所有这些都遵从Spring的通用事务和DAO异常层次结构。

6、Web模块(Spring Web)

拓展了Spring上下文,提供Web应用上下文,对Web开发提供功能上的支持,如请求、表单、异常等。

7、MVC模块(SpringWebMVC)

MVC框架是一个全功能的构建Web应用程序的MVC实现,通过策略接口,MVC框架编程高度可配置的,MVC容纳了大量视图技术,其中包括JSP,POI等,模型由JavaBean来构成,存放于m当中,而视图是一个接口,负责实现模型,控制器表示逻辑代码,由c的事情。

spring框架的功能可以用在任何J2EE服务器当中,大多数功能也适用于不受管理的环境,spring的核心要点就是支持不绑定到特定J2EE服务的可重用业务和数据的访问对象,毫无疑问这样的对象可以在不同的J2EE环境,独立应用程序和测试环境之间重用。

弊端:发展了太久之后违背了原来的理念,配置十分繁琐,人称“配置地狱”。

IOC本质

控制反转IOC ( Inversion of Control ) ,是一种设计思想, Dl (依赖注入)是实现 IOC 的一种方法,也有人认为 Dl 只是 IOC 的另一种说法。没有IOC 的程序中,我们使用面向对象编程,对象的创建与对象间的依赖关系完全硬编码在程序中,对象的创建由程序自己控制,控制反转后将对象的创建转移给第三方,个人认为所谓控制反转就是:获得依赖对象的方式反转了。

采用 XML 方式配置 Bean 的时候, Bean 的定义信息是和实现分离的,而采用注解的方式可以把两者合为一体. Bean 的定义信息直接以注解的形式定义在实现类中,从而达到了零配置的目的。

控制反转是一种通过描述(XML 或注解)并通过第三方去生产或获取特定对象的方式。

在 Spring 中实现控制反转的 IOC 容器,其实现方法是依赖注入( Dependency Injection , Dl )。

package com.demo.entity;

public class User {
private String userName;

public String getUserName() {
return userName;
}

public void setUserName(String userName) {
this.userName = userName;
}

@Override
public String toString() {
return "User{" +
"userName='" + userName + '\'' +
'}';
}
}

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!--使用Spring来创建对象,在Spring这些都称为Bean
类型 变量名 = new 类型();
User user = new User();
id = 变量名user,bean的唯一标识符
class = new的对象 new User() bean对象所对应的全限定名 包名+类型
property相当于给对象中的属性设置一个值 value="德玛西亚"
-->
<bean id="user" class="com.demo.entity.User">
<property name="userName" value="德玛西亚"/>
</bean>
</beans>
package com.quan.demo;

import com.demo.entity.User;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MyTest {
public static void main(String[] args) {
//获取Spring的上下文对象
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
User user = (User) context.getBean("user");
System.out.println(user.toString());//User{userName='德玛西亚'}
}
}

IOC创建对象的方式

使用无参构造创建对象

package com.demo.entity;

public class User {
private String name;

public User() {
System.out.println("User的无参构造");
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}
public void show(){
System.out.println("name="+name);
}
}

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="user" class="com.demo.entity.User">
<property name="name" value="无极剑圣"/>
</bean>
</beans>
package com.quan.demo;

import com.demo.entity.User;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MyTest {
public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
User user = (User) context.getBean("user");//User的无参构造
user.show();//name=无极剑圣
}
}

使用有参构造创建对象

下标赋值

package com.demo.entity;

public class User {
private String name;

public User(String name) {
this.name = name;
}
public void show(){
System.out.println("name="+name);
}
}

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!--下标赋值-->
<bean id="user" class="com.demo.entity.User">
<constructor-arg index="0" value="寒冰射手"/>
</bean>
</beans>

通过类型创建

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!--通过类型创建,不建议使用-->
<bean id="user" class="com.demo.entity.User">
<constructor-arg type="java.lang.String" value="武器大师"/>
</bean>
</beans>

通过参数名设置

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!--直接通过参数名设置-->
<bean id="user" class="com.demo.entity.User">
<constructor-arg name="name" value="诺克萨斯"/>
</bean>
</beans>

测试:

package com.quan.demo;

import com.demo.entity.User;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MyTest {
public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
User user = (User) context.getBean("user");
user.show();//name=诺克萨斯
}
}

总结:在配置文件加载的时候,容器中管理的对象就已经初始化了!

Spring配置文件

别名

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!--name也是别名,而且name更高级,可以同时取多个别名,可以用空格、逗号、分号分割-->
<bean id="user" class="com.demo.entity.User" name="user3,user4">
<constructor-arg name="name" value="诺克萨斯"/>
</bean>

<!--alias 别名 user2-->
<alias name="user" alias="user2"/>
</beans>
package com.quan.demo;

import com.demo.entity.User;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MyTest {
public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
User user = (User) context.getBean("user");
User user2 = (User) context.getBean("user2");
User user3 = (User) context.getBean("user3");
User user4 = (User) context.getBean("user4");
user.show();//name=诺克萨斯
user2.show();//name=诺克萨斯
user3.show();//name=诺克萨斯
user4.show();//name=诺克萨斯
}
}

import

这个import,一般用于团队开发使用,它可以将多个配置文件,导入合并为一个。假设,现在项目中有多个人开发,这三个人负责不同的类开发,不同的类需要注册在不同的bean中,我们可以利用import将所有人的beans.xml合并为一个总的!使用的时候,直接使用总的配置就可以了。

applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<import resource="beans.xml"/>
<import resource="beans2.xml"/>
<import resource="beans3.xml"/>

</beans>

DI依赖注入

构造器注入、set注入、扩展方式注入

依赖:bean对象的创建依赖于容器

注入:bean对象中的所有属性,由容器来注入

Set注入

package com.demo.entity;

public class Address {
private String address;
/*省略get、set、toString方法*/
}
package com.demo.entity;

import java.util.*;

public class Student {
private String name;
private Address address;
private String[] books;
private List<String> hobbys;
private Map<String,String> card;
private Set<String> games;
private String wife;
private Properties info;
/*省略get、set、toString方法*/
}

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="address" class="com.demo.entity.Address">
<property name="address" value="郑州"/>
</bean>
<bean id="student" class="com.demo.entity.Student">
<!--普通值注入 value-->
<property name="name" value="寒冰"/>
<!--Bean注入 ref-->
<property name="address" ref="address"/>
<!--数组注入-->
<property name="books">
<array>
<value>西游记</value>
<value>红楼梦</value>
<value>水浒传</value>
<value>三国演义</value>
</array>
</property>
<!--List注入-->
<property name="hobbys">
<list>
<value>音乐</value>
<value>电影</value>
<value>读书</value>
</list>
</property>
<!--Map注入-->
<property name="card">
<map>
<entry key="身份证" value="123456789"/>
<entry key="军人证" value="123123123"/>
<entry key="银行卡" value="121121212"/>
</map>
</property>
<!--Set注入-->
<property name="games">
<set>
<value>QQ飞车</value>
<value>英雄联盟</value>
</set>
</property>
<!--null值注入-->
<property name="wife">
<null/>
</property>
<!--Properties 注入-->
<property name="info">
<props>
<prop key="username">root</prop>
<prop key="password">123456</prop>
</props>
</property>
</bean>
</beans>
package com.quan.demo;

import com.demo.entity.Student;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MyTest {
public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
Student student = (Student) context.getBean("student");
System.out.println(student);
/* 输出结果:
* Student{name='寒冰',
* address=Address{address='郑州'},
* books=[西游记, 红楼梦, 水浒传, 三国演义],
* hobbys=[音乐, 电影, 读书],
* card={身份证=123456789, 军人证=123123123, 银行卡=121121212},
* games=[QQ飞车, 英雄联盟],
* wife='null',
* info={password=123456, username=root}}
*/
}
}

p命名和c命名空间注入

p命名和c命名空间不能直接使用,需要导入xml约束!

xmlns:p="http://www.springframework.org/schema/p"
xmlns:c="http://www.springframework.org/schema/c"
package com.demo.entity;

public class User {
private String name;
private int age;

public User() {
}

public User(String name, int age) {
this.name = name;
this.age = age;
}
// get,set,toString省略
}

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<!--p命名空间注入,可以直接注入属性的值: property-->
<bean id="user" class="com.demo.entity.User" p:name="寒冰" p:age="18"/>
<!--c命名空间注入,通过构造器注入: construct-args-->
<bean id="user2" class="com.demo.entity.User" c:age="19" c:name="德玛"/>

</beans>
package com.quan.demo;

import com.demo.entity.User;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MyTest {
public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
User user = context.getBean("user",User.class);
User user2 = context.getBean("user2",User.class);
System.out.println(user);//User{name='寒冰', age=18}
System.out.println(user2);//User{name='德玛', age=19}
}
}

Bean的作用域

作用域 描述
singleton 默认单例模式,在整个Spring IoC容器中,使用singleton定义的Bean将只有一个实例
prototype 原型模式,每次通过容器的getBean方法获取prototype定义的Bean时,都将产生一个新的Bean实例
request 对于每次HTTP请求,使用request定义的Bean都将产生一个新实例,即每次HTTP请求将会产生不同的Bean实例。只有在Web应用中使用Spring时,该作用域才有效
session 对于每次HTTP Session,使用session定义的Bean豆浆产生一个新实例。同样只有在Web应用中使用Spring时,该作用域才有效
globalsession 每个全局的HTTP Session,使用session定义的Bean都将产生一个新实例。典型情况下,仅在使用portlet context的时候有效。同样只有在Web应用中使用Spring时,该作用域才有效

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!--scope 默认单例模式singleton-->
<bean id="user" class="com.demo.entity.User" scope="singleton">
<property name="name" value="德玛西亚"/>
</bean>
<!--scope prototype 原型模式-->
<bean id="user2" class="com.demo.entity.User" scope="prototype">
<property name="name" value="德玛西亚"/>
</bean>
</beans>

Bean的自动装配

自动装配是spring满足bean依赖的一种方式,spring会在上下文中自动寻找,并自动给bean装配属性

在spring中有三种装配方式:

  1. 在xml中显示的配置
  2. 在Java中显示的配置
  3. 隐式的自动装配bean
package com.demo.entity;

public class Cat {
public void shout(){
System.out.println("Cat");
}
}
package com.demo.entity;

public class Dog {
public void shout(){
System.out.println("Dog");
}
}
package com.demo.entity;

public class People {
private Cat cat;
private Dog dog;
private String name;
// get,set,toString省略
}

beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="cat" class="com.demo.entity.Cat"/>
<bean id="dog" class="com.demo.entity.Dog"/>
<bean id="people" class="com.demo.entity.People">
<property name="name" value="是我"/>
<property name="cat" ref="cat"/>
<property name="dog" ref="dog"/>
</bean>
</beans>
package com.quan.demo;

import com.demo.entity.People;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MyTest {
public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
People people = context.getBean("people", People.class);
people.getDog().shout();//Dog
people.getCat().shout();//Cat
}
}

byName

byName:需要保证所有bean的id唯一,并且这个bean需要和自动注入的属性的set方法的值一致。byName就是通过Bean的id或者name.

  • name:这个name并不是方法的名字,而是拿方法名字经过处理后的名字
  • 如果方法名字以get开头,比如getXXX,那么name=XXX
  • 如果方法名字以is开头,比如isXXX,那么name=XXX
  • 如果方法名字以set开头,比如setXXX,那么name=XXX
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="cat" class="com.demo.entity.Cat"/>
<bean id="dog" class="com.demo.entity.Dog"/>
<!--byName:会自动在容器上下文中查找,和自己对象set方法后面的值对应的beanid!-->
<bean id="people" class="com.demo.entity.People" autowire="byName">
<property name="name" value="是我"/>
</bean>
</beans>

byType

byType:需要保证所有bean的class唯一,并且这个bean需要和自动注入属性的类型一致。byType就是按Bean的Class的类型

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="cat" class="com.demo.entity.Cat"/>
<bean id="dog" class="com.demo.entity.Dog"/>
<!--byType:会自动在容器上下文中查找,和自己对象属性类型相同的 beanid-->
<bean id="people" class="com.demo.entity.People" autowire="byType">
<property name="name" value="是我"/>
</bean>
</beans>

使用注解实现自动装配

jdk1.5支持的注解,spring2.5支持的注解

要使用注解须知:

  • 导入context约束

  • 配置注解的支持 <context:annotation-config/>

    <?xml version="1.0" encoding="UTF-8"?>
    <beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/context
    http://www.springframework.org/schema/context/spring-context.xsd">
    <!--开启注解的支持-->
    <context:annotation-config/>

    <bean id="cat" class="com.demo.entity.Cat"/>
    <bean id="dog" class="com.demo.entity.Dog"/>
    <bean id="people" class="com.demo.entity.People"/>
    </beans>

    @Autowired

    @Autowired源码如下:

    package org.springframework.beans.factory.annotation;
    @Target({ElementType.CONSTRUCTOR, ElementType.METHOD, ElementType.PARAMETER, ElementType.FIELD, ElementType.ANNOTATION_TYPE})
    @Retention(RetentionPolicy.RUNTIME)
    @Documented
    public @interface Autowired {
    boolean required() default true;
    }

    直接在属性上使用即可,也可以在set方法上使用。

    使用Autowired我们就可以不用编写set方法了,前提是你这个自动装配的属性在IOC容器中存在,且符合名字ByName!

    package com.demo.entity;

    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.lang.Nullable;

    public class People {
    //如果显式定义了Autowired的required属性为false,说明这个对象可以为null,否则不允许为空
    @Autowired(required = false)
    private Cat cat;
    @Autowired
    private Dog dog;
    private String name;

    //@Nullable 字段标记了了这个注解,说明这个字段可以为null;
    public People(@Nullable String name) {
    this.name = name;
    }

    public Cat getCat() {
    return cat;
    }

    public Dog getDog() {
    return dog;
    }

    public String getName() {
    return name;
    }

    public void setName(String name) {
    this.name = name;
    }
    }

    如果@Autowired自动装配的环境比较复杂,自动装配无法通过一个注解完成时候,我们可以使用@Qualifier(value = “xxx”)去配置@Autowired的使用,指定一个唯一的bean对象注入!

    @Qualifier源码如下:

    package org.springframework.beans.factory.annotation;
    @Target({ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER, ElementType.TYPE, ElementType.ANNOTATION_TYPE})
    @Retention(RetentionPolicy.RUNTIME)
    @Inherited
    @Documented
    public @interface Qualifier {
    String value() default "";
    }
    package com.demo.entity;

    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.beans.factory.annotation.Qualifier;

    public class People {
    @Autowired
    @Qualifier(value = "cat111")
    private Cat cat;
    @Autowired
    @Qualifier(value = "dog222")
    private Dog dog;
    private String name;
    public Cat getCat() {
    return cat;
    }
    public Dog getDog() {
    return dog;
    }
    }
    <?xml version="1.0" encoding="UTF-8"?>
    <beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/context
    http://www.springframework.org/schema/context/spring-context.xsd">
    <!--开启注解的支持-->
    <context:annotation-config/>

    <bean id="cat111" class="com.demo.entity.Cat"/>
    <bean id="dog222" class="com.demo.entity.Dog"/>
    <bean id="people" class="com.demo.entity.People"/>
    </beans>

@Resource

@Resource源码如下:@Resource是java包下的

package javax.annotation;
@Target({TYPE, FIELD, METHOD})
@Retention(RUNTIME)
public @interface Resource {
String name() default "";
String lookup() default "";
Class<?> type() default java.lang.Object.class;
enum AuthenticationType {
CONTAINER,
APPLICATION
}
AuthenticationType authenticationType() default AuthenticationType.CONTAINER;
boolean shareable() default true;
String mappedName() default "";
String description() default "";
}
package com.demo.entity;

import javax.annotation.Resource;

public class People {
@Resource
private Cat cat;
@Resource
private Dog dog;
private String name;
public Cat getCat() {
return cat;
}
public Dog getDog() {
return dog;
}
}
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">
<!--开启注解的支持-->
<context:annotation-config/>

<!--@Resource默认通过byName方式-->
<!--下面4个,其中cat有两个,dog有两个,且名字都不符合,byName会找不到-->
<bean id="cat11" class="com.demo.entity.Cat"/>
<bean id="cat33" class="com.demo.entity.Cat"/>
<bean id="dog44" class="com.demo.entity.Dog"/>
<bean id="dog55" class="com.demo.entity.Dog"/>

<!--下面4个,cat有两个,cat和dog只要有一个名字符合,byName就会找到-->
<bean id="cat" class="com.demo.entity.Cat"/>
<bean id="cat44" class="com.demo.entity.Cat"/>
<bean id="dog" class="com.demo.entity.Dog"/>
<bean id="dog66" class="com.demo.entity.Dog"/>

<!--下面两个名字不同但类型一样 通过byType方式-->
<bean id="cat22" class="com.demo.entity.Cat"/>
<bean id="dog33" class="com.demo.entity.Dog"/>

<bean id="people" class="com.demo.entity.People"/>
</beans>

@Resource和@Autowired的区别:

  • 都是用来自动装配的,都可以放在属性字段上
  • @Autowired通过byType的方式实现,如果type不唯一会自动地通过byName去找如果两个都找不到的情况下,就报错!(Spring的)
  • @Resource默认通过byName的方式实现,如果找不到名字,则通过byType实现!如果两个都找不到的情况下,就报错!(java原生注解)
  • 提供方:@Autowired是由org.springframework.beans.factory.annotation.Autowired提供,换句话说就是由Spring提供;@Resource是由javax.annotation.Resource提供,即J2EE提供,需要JDK1.6及以上。
  • 注入方式:@Autowired只按照byType 注入;如果我们想使用按名称装配,可以结合@Qualifier注解一起使用。@Resource默认按byName自动注入,也提供按照byType 注入;

spring注解开发

确定已经导入aop的包。增加注解支持<context:annotation-config/>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<!--开启注解的支持-->
<context:annotation-config/>
</beans>

@Component源码如下:

package org.springframework.stereotype;
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Indexed
public @interface Component {
String value() default "";
}

bean

package com.demo.entity;

import org.springframework.stereotype.Component;
//@Component 组件
//等价于<bean id="user" class="com.demo.entity.User">
@Component
public class User {
private String name;
}

属性如何注入

@Component
public class User {
public String name;
@Value("李四")
//相当于<property name="name" value="李四"/>
public void setName(String name) {
this.name = name;
}
}

@Component 有几个衍生的注解,我们在web开发中,会按照mvc三层架构分层。这四个注解功能都是一样的,都是代表将某个类注册到spring容器中,装配bean

  • dao @Repository
  • service @Service
  • controller @Controller

作用域

@Component
@Scope("prototype")
public class User {
public String name;
@Value("张三")
//相当于<property name="name" value="张三"/>
public void setName(String name) {
this.name = name;
}
}

Spring 事务

什么是事务?

事务是逻辑上的一组操作,要么都执行,要么都不执行。

我们系统的每个业务方法可能包括了多个原子性的数据库操作,比如下面的 savePerson() 方法中就有两个原子性的数据库操作。这些原子性的数据库操作是有依赖的,它们要么都执行,要不就都不执行。

public void savePerson() {
personDao.save(person);
personDetailDao.save(personDetail);
}

另外,需要格外注意的是:事务能否生效数据库引擎是否支持事务是关键。比如常用的 MySQL 数据库默认使用支持事务的 innodb引擎。但是,如果把数据库引擎变为 myisam,那么程序也就不再支持事务了!

事务最经典也经常被拿出来说例子就是转账了。假如小明要给小红转账 1000 元,这个转账会涉及到两个关键操作就是:

  1. 将小明的余额减少 1000 元。
  2. 将小红的余额增加 1000 元。

万一在这两个操作之间突然出现错误比如银行系统崩溃或者网络故障,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。

public class OrdersService {
private AccountDao accountDao;

public void setOrdersDao(AccountDao accountDao) {
this.accountDao = accountDao;
}

@Transactional(propagation = Propagation.REQUIRED,
isolation = Isolation.DEFAULT, readOnly = false, timeout = -1)
public void accountMoney() {
//小红账户多1000
accountDao.addMoney(1000,xiaohong);
//模拟突然出现的异常,比如银行中可能为突然停电等等
//如果没有配置事务管理的话会造成,小红账户多了1000而小明账户没有少钱
int i = 10 / 0;
//小王账户少1000
accountDao.reduceMoney(1000,xiaoming);
}
}

事务的特性(ACID)

原子性(Atomicity): 一个事务(transaction)中的所有操作,或者全部完成,或者全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。即,事务不可分割、不可约简。事务是不可再分割的工作单位,事务里的操作要么都执行,要么都不执行(操作共进退)

一致性(Consistency): 在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设约束、触发器、级联回滚等。事务前后的数据必须保持一致性(能量守恒)

隔离性(Isolation): 数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读已提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。多个事务之间不能交叉执行(事物相互隔离执行)

持久性(Durability): 事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。事务一旦提交,对数据库的影响都是永久的,即使数据库出故障也不会改变这种影响

Spring 对事务的支持

再提醒一次:你的程序是否支持事务首先取决于数据库 ,比如使用 MySQL 的话,如果你选择的是 innodb 引擎,那么恭喜你,是可以支持事务的。但是,如果你的 MySQL 数据库使用的是 myisam 引擎的话,那不好意思,从根上就是不支持事务的。

MySQL 怎么保证原子性的?

我们知道如果想要保证事务的原子性,就需要在异常发生时,对已经执行的操作进行回滚,在 MySQL 中,恢复机制是通过 回滚日志(undo log) 实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后再执行相关的操作。如果执行过程中遇到异常的话,我们直接利用 回滚日志 中的信息将数据回滚到修改之前的样子即可!并且,回滚日志会先于数据持久化到磁盘上。这样就保证了即使遇到数据库突然宕机等情况,当用户再次启动数据库的时候,数据库还能够通过查询回滚日志来回滚将之前未完成的事务。

Spring 支持两种方式的事务管理

编程式事务管理

通过 TransactionTemplate或者TransactionManager手动管理事务,实际应用中很少使用,但是对于你理解 Spring 事务管理原理有帮助。

使用TransactionTemplate 进行编程式事务管理的示例代码如下:

@Autowired
private TransactionTemplate transactionTemplate;
public void testTransaction() {

transactionTemplate.execute(new TransactionCallbackWithoutResult() {
@Override
protected void doInTransactionWithoutResult(TransactionStatus transactionStatus) {

try {

// .... 业务代码
} catch (Exception e){
//回滚
transactionStatus.setRollbackOnly();
}

}
});
}

使用 TransactionManager 进行编程式事务管理的示例代码如下:

@Autowired
private PlatformTransactionManager transactionManager;

public void testTransaction() {

TransactionStatus status = transactionManager.getTransaction(new DefaultTransactionDefinition());
try {
// .... 业务代码
transactionManager.commit(status);
} catch (Exception e) {
transactionManager.rollback(status);
}
}

声明式事务管理

推荐使用(代码侵入性最小),实际是通过 AOP 实现(基于@Transactional 的全注解方式使用最多)。

使用 @Transactional注解进行事务管理的示例代码如下:

@Transactional(propagation = Propagation.REQUIRED)
public void aMethod {
//do something
B b = new B();
C c = new C();
b.bMethod();
c.cMethod();
}

Spring 事务管理接口介绍

Spring 框架中,事务管理相关最重要的 3 个接口如下:

  • PlatformTransactionManager: (平台)事务管理器,Spring 事务策略的核心。
  • TransactionDefinition: 事务定义信息(事务隔离级别、传播行为、超时、只读、回滚规则)。
  • TransactionStatus: 事务运行状态。

我们可以把 PlatformTransactionManager 接口可以被看作是事务上层的管理者,而 TransactionDefinitionTransactionStatus 这两个接口可以看作是事务的描述。

PlatformTransactionManager 会根据 TransactionDefinition 的定义比如事务超时时间、隔离级别、传播行为等来进行事务管理 ,而 TransactionStatus 接口则提供了一些方法来获取事务相应的状态比如是否新事务、是否可以回滚等等。

PlatformTransactionManager:事务管理接口

Spring 并不直接管理事务,而是提供了多种事务管理器 。Spring 事务管理器的接口是: PlatformTransactionManager

通过这个接口,Spring 为各个平台如:JDBC(DataSourceTransactionManager)、Hibernate(HibernateTransactionManager)、JPA(JpaTransactionManager)等都提供了对应的事务管理器,但是具体的实现就是各个平台自己的事情了

PlatformTransactionManager接口中定义了三个方法:

package org.springframework.transaction;

import org.springframework.lang.Nullable;

public interface PlatformTransactionManager {
//获得事务
TransactionStatus getTransaction(@Nullable TransactionDefinition var1) throws TransactionException;
//提交事务
void commit(TransactionStatus var1) throws TransactionException;
//回滚事务
void rollback(TransactionStatus var1) throws TransactionException;
}

TransactionDefinition:事务属性

事务管理器接口 PlatformTransactionManager 通过 getTransaction(TransactionDefinition definition) 方法来得到一个事务,这个方法里面的参数是 TransactionDefinition 类 ,这个类就定义了一些基本的事务属性。

什么是事务属性呢? 事务属性可以理解成事务的一些基本配置,描述了事务策略如何应用到方法上。

事务属性包含了 5 个方面:

  • 隔离级别
  • 传播行为
  • 回滚规则
  • 是否只读
  • 事务超时

TransactionDefinition 接口中定义了 5 个方法以及一些表示事务属性的常量比如隔离级别、传播行为等等。

package org.springframework.transaction;

import org.springframework.lang.Nullable;

public interface TransactionDefinition {
int PROPAGATION_REQUIRED = 0;
int PROPAGATION_SUPPORTS = 1;
int PROPAGATION_MANDATORY = 2;
int PROPAGATION_REQUIRES_NEW = 3;
int PROPAGATION_NOT_SUPPORTED = 4;
int PROPAGATION_NEVER = 5;
int PROPAGATION_NESTED = 6;
int ISOLATION_DEFAULT = -1;
int ISOLATION_READ_UNCOMMITTED = 1;
int ISOLATION_READ_COMMITTED = 2;
int ISOLATION_REPEATABLE_READ = 4;
int ISOLATION_SERIALIZABLE = 8;
int TIMEOUT_DEFAULT = -1;
// 返回事务的传播行为,默认值为 REQUIRED。
int getPropagationBehavior();
//返回事务的隔离级别,默认值是 DEFAULT
int getIsolationLevel();
// 返回事务的超时时间,默认值为-1。如果超过该时间限制但事务还没有完成,则自动回滚事务。
int getTimeout();
// 返回是否为只读事务,默认值为 false
boolean isReadOnly();

@Nullable
String getName();
}

TransactionStatus:事务状态

TransactionStatus接口用来记录事务的状态 该接口定义了一组方法,用来获取或判断事务的相应状态信息。

PlatformTransactionManager.getTransaction(…)方法返回一个 TransactionStatus 对象。

TransactionStatus 接口内容如下:

public interface TransactionStatus{
boolean isNewTransaction(); // 是否是新的事务
boolean hasSavepoint(); // 是否有恢复点
void setRollbackOnly(); // 设置为只回滚
boolean isRollbackOnly(); // 是否为只回滚
boolean isCompleted; // 是否已完成
}

事务属性详解

实际业务开发中,一般都是使用 @Transactional 注解来开启事务。

事务传播行为

事务传播行为是为了解决业务层方法之间互相调用的事务问题

当事务方法被另一个事务方法调用时,必须指定事务应该如何传播。例如:方法可能继续在现有事务中运行,也可能开启一个新事务,并在自己的事务中运行。

举个例子:我们在 A 类的aMethod()方法中调用了 B 类的 bMethod() 方法。这个时候就涉及到业务层方法之间互相调用的事务问题。如果我们的 bMethod()如果发生异常需要回滚,如何配置事务传播行为才能让 aMethod()也跟着回滚呢?这个时候就需要事务传播行为的知识了,如果你不知道的话一定要好好看一下。

@Service
Class A {
@Autowired
B b;
@Transactional(propagation = Propagation.xxx)
public void aMethod {
//do something
b.bMethod();
}
}

@Service
Class B {
@Transactional(propagation = Propagation.xxx)
public void bMethod {
//do something
}
}

TransactionDefinition定义中包括了如下几个表示传播行为的常量:

public interface TransactionDefinition {
int PROPAGATION_REQUIRED = 0;
int PROPAGATION_SUPPORTS = 1;
int PROPAGATION_MANDATORY = 2;
int PROPAGATION_REQUIRES_NEW = 3;
int PROPAGATION_NOT_SUPPORTED = 4;
int PROPAGATION_NEVER = 5;
int PROPAGATION_NESTED = 6;
......
}

不过,为了方便使用,Spring 相应地定义了一个枚举类:Propagation

package org.springframework.transaction.annotation;

import org.springframework.transaction.TransactionDefinition;

public enum Propagation {

REQUIRED(TransactionDefinition.PROPAGATION_REQUIRED),

SUPPORTS(TransactionDefinition.PROPAGATION_SUPPORTS),

MANDATORY(TransactionDefinition.PROPAGATION_MANDATORY),

REQUIRES_NEW(TransactionDefinition.PROPAGATION_REQUIRES_NEW),

NOT_SUPPORTED(TransactionDefinition.PROPAGATION_NOT_SUPPORTED),

NEVER(TransactionDefinition.PROPAGATION_NEVER),

NESTED(TransactionDefinition.PROPAGATION_NESTED);

private final int value;

Propagation(int value) {
this.value = value;
}

public int value() {
return this.value;
}

}

正确的事务传播行为可能的值如下

1.TransactionDefinition.PROPAGATION_REQUIRED

使用的最多的一个事务传播行为,我们平时经常使用的@Transactional注解默认使用就是这个事务传播行为。如果当前存在事务,则加入该事务;如果当前没有事务,则创建一个新的事务。也就是说:

  • 如果外部方法没有开启事务的话,Propagation.REQUIRED修饰的内部方法会新开启自己的事务,且开启的事务相互独立,互不干扰。
  • 如果外部方法开启事务并且被Propagation.REQUIRED的话,所有Propagation.REQUIRED修饰的内部方法和外部方法均属于同一事务 ,只要一个方法回滚,整个事务均回滚。

举个例子:如果我们上面的aMethod()bMethod()使用的都是PROPAGATION_REQUIRED传播行为的话,两者使用的就是同一个事务,只要其中一个方法回滚,整个事务均回滚。

@Service
Class A {
@Autowired
B b;
@Transactional(propagation = Propagation.REQUIRED)
public void aMethod {
//do something
b.bMethod();
}
}
@Service
Class B {
@Transactional(propagation = Propagation.REQUIRED)
public void bMethod {
//do something
}
}

2.TransactionDefinition.PROPAGATION_REQUIRES_NEW

创建一个新的事务,如果当前存在事务,则把当前事务挂起。也就是说不管外部方法是否开启事务,Propagation.REQUIRES_NEW修饰的内部方法会新开启自己的事务,且开启的事务相互独立,互不干扰。

举个例子:如果我们上面的bMethod()使用PROPAGATION_REQUIRES_NEW事务传播行为修饰,aMethod还是用PROPAGATION_REQUIRED修饰的话。如果aMethod()发生异常回滚,bMethod()不会跟着回滚,因为 bMethod()开启了独立的事务。但是,如果 bMethod()抛出了未被捕获的异常并且这个异常满足事务回滚规则的话,aMethod()同样也会回滚,因为这个异常被 aMethod()的事务管理机制检测到了。

@Service
Class A {
@Autowired
B b;
@Transactional(propagation = Propagation.REQUIRED)
public void aMethod {
//do something
b.bMethod();
}
}

@Service
Class B {
@Transactional(propagation = Propagation.REQUIRES_NEW)
public void bMethod {
//do something
}
}

3.TransactionDefinition.PROPAGATION_NESTED:

如果当前存在事务,就在嵌套事务内执行;如果当前没有事务,就执行与TransactionDefinition.PROPAGATION_REQUIRED类似的操作。也就是说:

  • 在外部方法开启事务的情况下,在内部开启一个新的事务,作为嵌套事务存在。
  • 如果外部方法无事务,则单独开启一个事务,与 PROPAGATION_REQUIRED 类似。

这里还是简单举个例子:如果 bMethod() 回滚的话,aMethod()也会回滚。

@Service
Class A {
@Autowired
B b;
@Transactional(propagation = Propagation.REQUIRED)
public void aMethod {
//do something
b.bMethod();
}
}

@Service
Class B {
@Transactional(propagation = Propagation.NESTED)
public void bMethod {
//do something
}
}

4.TransactionDefinition.PROPAGATION_MANDATORY

如果当前存在事务,则加入该事务;如果当前没有事务,则抛出异常。(mandatory:强制性)

这个使用的很少,就不举例子来说了。

若是错误的配置以下 3 种事务传播行为,事务将不会发生回滚,这里不对照案例讲解了,使用的很少。

  • TransactionDefinition.PROPAGATION_SUPPORTS: 如果当前存在事务,则加入该事务;如果当前没有事务,则以非事务的方式继续运行。
  • TransactionDefinition.PROPAGATION_NOT_SUPPORTED: 以非事务方式运行,如果当前存在事务,则把当前事务挂起。
  • TransactionDefinition.PROPAGATION_NEVER: 以非事务方式运行,如果当前存在事务,则抛出异常。

事务隔离级别

TransactionDefinition 接口中定义了五个表示隔离级别的常量:

public interface TransactionDefinition {
......
int ISOLATION_DEFAULT = -1;
int ISOLATION_READ_UNCOMMITTED = 1;
int ISOLATION_READ_COMMITTED = 2;
int ISOLATION_REPEATABLE_READ = 4;
int ISOLATION_SERIALIZABLE = 8;
......
}

和事务传播行为那块一样,为了方便使用,Spring 也相应地定义了一个枚举类:Isolation

public enum Isolation {

DEFAULT(TransactionDefinition.ISOLATION_DEFAULT),

READ_UNCOMMITTED(TransactionDefinition.ISOLATION_READ_UNCOMMITTED),

READ_COMMITTED(TransactionDefinition.ISOLATION_READ_COMMITTED),

REPEATABLE_READ(TransactionDefinition.ISOLATION_REPEATABLE_READ),

SERIALIZABLE(TransactionDefinition.ISOLATION_SERIALIZABLE);

private final int value;

Isolation(int value) {
this.value = value;
}

public int value() {
return this.value;
}

}

下面我依次对每一种事务隔离级别进行介绍:

  • TransactionDefinition.ISOLATION_DEFAULT :使用后端数据库默认的隔离级别,MySQL 默认采用的 REPEATABLE_READ 隔离级别 Oracle 默认采用的 READ_COMMITTED 隔离级别.
  • TransactionDefinition.ISOLATION_READ_UNCOMMITTED :最低的隔离级别,使用这个隔离级别很少,因为它允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读
  • TransactionDefinition.ISOLATION_READ_COMMITTED : 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生
  • TransactionDefinition.ISOLATION_REPEATABLE_READ : 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
  • TransactionDefinition.ISOLATION_SERIALIZABLE : 最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。但是这将严重影响程序的性能。通常情况下也不会用到该级别。

事务超时属性

所谓事务超时,就是指一个事务所允许执行的最长时间,如果超过该时间限制但事务还没有完成,则自动回滚事务。在 TransactionDefinition 中以 int 的值来表示超时时间,其单位是秒,默认值为-1,这表示事务的超时时间取决于底层事务系统或者没有超时时间。

事务只读属性

package org.springframework.transaction;

import org.springframework.lang.Nullable;

public interface TransactionDefinition {
......
// 返回是否为只读事务,默认值为 false
boolean isReadOnly();

}

对于只有读取数据查询的事务,可以指定事务类型为 readonly,即只读事务。只读事务不涉及数据的修改,数据库会提供一些优化手段,适合用在有多条数据库查询操作的方法中。

很多人就会疑问了,为什么我一个数据查询操作还要启用事务支持呢?

拿 MySQL 的 innodb 举例子,根据官网 https://dev.mysql.com/doc/refman/5.7/en/innodb-autocommit-commit-rollback.htmlopen in new window 描述:

MySQL 默认对每一个新建立的连接都启用了autocommit模式。在该模式下,每一个发送到 MySQL 服务器的sql语句都会在一个单独的事务中进行处理,执行结束后会自动提交事务,并开启一个新的事务。

但是,如果你给方法加上了Transactional注解的话,这个方法执行的所有sql会被放在一个事务中。如果声明了只读事务的话,数据库就会去优化它的执行,并不会带来其他的什么收益。

如果不加Transactional,每条sql会开启一个单独的事务,中间被其它事务改了数据,都会实时读取到最新值。

分享一下关于事务只读属性,其他人的解答:

  • 如果你一次执行单条查询语句,则没有必要启用事务支持,数据库默认支持 SQL 执行期间的读一致性;
  • 如果你一次执行多条查询语句,例如统计查询,报表查询,在这种场景下,多条查询 SQL 必须保证整体的读一致性,否则,在前条 SQL 查询之后,后条 SQL 查询之前,数据被其他用户改变,则该次整体的统计查询将会出现读数据不一致的状态,此时,应该启用事务支持

事务回滚规则

这些规则定义了哪些异常会导致事务回滚而哪些不会。默认情况下,事务只有遇到运行期异常(RuntimeException 的子类)时才会回滚,Error 也会导致事务回滚,但是,在遇到检查型(Checked)异常时不会回滚。

如果你想要回滚你定义的特定的异常类型的话,可以这样:

@Transactional(rollbackFor= MyException.class)

@Transactional 注解使用详解

@Transactional 的作用范围

  1. 方法 :推荐将注解使用于方法上,不过需要注意的是:该注解只能应用到 public 方法上,否则不生效。
  2. :如果这个注解使用在类上的话,表明该注解对该类中所有的 public 方法都生效。
  3. 接口 :不推荐在接口上使用。

@Transactional 的常用配置参数

@Transactional注解源码如下,里面包含了基本事务属性的配置:

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Inherited
@Documented
public @interface Transactional {

@AliasFor("transactionManager")
String value() default "";

@AliasFor("value")
String transactionManager() default "";

Propagation propagation() default Propagation.REQUIRED;

Isolation isolation() default Isolation.DEFAULT;

int timeout() default TransactionDefinition.TIMEOUT_DEFAULT;

boolean readOnly() default false;

Class<? extends Throwable>[] rollbackFor() default {};

String[] rollbackForClassName() default {};

Class<? extends Throwable>[] noRollbackFor() default {};

String[] noRollbackForClassName() default {};

}

@Transactional 的常用配置参数总结(只列出了 5 个我平时比较常用的):

属性名 说明
propagation 事务的传播行为,默认值为 REQUIRED,可选的值在上面介绍过
isolation 事务的隔离级别,默认值采用 DEFAULT,可选的值在上面介绍过
timeout 事务的超时时间,默认值为-1(不会超时)。如果超过该时间限制但事务还没有完成,则自动回滚事务。
readOnly 指定事务是否为只读事务,默认值为 false。
rollbackFor 用于指定能够触发事务回滚的异常类型,并且可以指定多个异常类型。

@Transactional 事务注解原理

我们知道,@Transactional 的工作机制是基于 AOP 实现的,AOP 又是使用动态代理实现的。如果目标对象实现了接口,默认情况下会采用 JDK 的动态代理,如果目标对象没有实现了接口,会使用 CGLIB 动态代理。

多提一嘴:createAopProxy() 方法 决定了是使用 JDK 还是 Cglib 来做动态代理,源码如下:

public class DefaultAopProxyFactory implements AopProxyFactory, Serializable {

@Override
public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException {
if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) {
Class<?> targetClass = config.getTargetClass();
if (targetClass == null) {
throw new AopConfigException("TargetSource cannot determine target class: " +
"Either an interface or a target is required for proxy creation.");
}
if (targetClass.isInterface() || Proxy.isProxyClass(targetClass)) {
return new JdkDynamicAopProxy(config);
}
return new ObjenesisCglibAopProxy(config);
}
else {
return new JdkDynamicAopProxy(config);
}
}
.......
}

如果一个类或者一个类中的 public 方法上被标注@Transactional 注解的话,Spring 容器就会在启动的时候为其创建一个代理类,在调用被@Transactional 注解的 public 方法的时候,实际调用的是,TransactionInterceptor 类中的 invoke()方法。这个方法的作用就是在目标方法之前开启事务,方法执行过程中如果遇到异常的时候回滚事务,方法调用完成之后提交事务。

TransactionInterceptor 类中的 invoke()方法内部实际调用的是 TransactionAspectSupport 类的 invokeWithinTransaction()方法。由于新版本的 Spring 对这部分重写很大,而且用到了很多响应式编程的知识,这里就不列源码了。

Spring AOP 自调用问题

若同一类中的其他没有 @Transactional 注解的方法内部调用有 @Transactional 注解的方法,有@Transactional 注解的方法的事务会失效。

这是由于Spring AOP代理的原因造成的,因为只有当 @Transactional 注解的方法在类以外被调用的时候,Spring 事务管理才生效。

MyService 类中的method1()调用method2()就会导致method2()的事务失效。

@Service
public class MyService {

private void method1() {
method2();
//......
}
@Transactional
public void method2() {
//......
}
}

解决办法就是避免同一类中自调用或者使用 AspectJ 取代 Spring AOP 代理。

@Transactional 的使用注意事项总结

  • @Transactional 注解只有作用到 public 方法上事务才生效,不推荐在接口上使用;
  • 避免同一个类中调用 @Transactional 注解的方法,这样会导致事务失效;
  • 正确的设置 @TransactionalrollbackForpropagation 属性,否则事务可能会回滚失败;
  • @Transactional 注解的方法所在的类必须被 Spring 管理,否则不生效;
  • 底层使用的数据库必须支持事务机制,否则不生效;

Spring 中的设计模式

控制反转(IoC)和依赖注入(DI)

IoC(Inversion of Control,控制反转) 是 Spring 中一个非常非常重要的概念,它不是什么技术,而是一种解耦的设计思想。IoC 的主要目的是借助于“第三方”(Spring 中的 IoC 容器) 实现具有依赖关系的对象之间的解耦(IOC 容器管理对象,你只管使用即可),从而降低代码之间的耦合度。

IoC 是一个原则,而不是一个模式,以下模式(但不限于)实现了 IoC 原则。

ioc-patterns

Spring IoC 容器就像是一个工厂一样,当我们需要创建一个对象的时候,只需要配置好配置文件/注解即可,完全不用考虑对象是如何被创建出来的。 IoC 容器负责创建对象,将对象连接在一起,配置这些对象,并从创建中处理这些对象的整个生命周期,直到它们被完全销毁。

在实际项目中一个 Service 类如果有几百甚至上千个类作为它的底层,我们需要实例化这个 Service,你可能要每次都要搞清这个 Service 所有底层类的构造函数,这可能会把人逼疯。如果利用 IOC 的话,你只需要配置好,然后在需要的地方引用就行了,这大大增加了项目的可维护性且降低了开发难度。

关于 Spring IOC 的理解,推荐看这一下知乎的一个回答:https://www.zhihu.com/question/23277575/answer/169698662open in new window ,非常不错。

控制反转怎么理解呢? 举个例子:”对象 a 依赖了对象 b,当对象 a 需要使用 对象 b 的时候必须自己去创建。但是当系统引入了 IOC 容器后, 对象 a 和对象 b 之前就失去了直接的联系。这个时候,当对象 a 需要使用 对象 b 的时候, 我们可以指定 IOC 容器去创建一个对象 b 注入到对象 a 中”。 对象 a 获得依赖对象 b 的过程,由主动行为变为了被动行为,控制权反转,这就是控制反转名字的由来。

DI(Dependecy Inject,依赖注入)是实现控制反转的一种设计模式,依赖注入就是将实例变量传入到一个对象中去。

# 工厂设计模式

Spring 使用工厂模式可以通过 BeanFactoryApplicationContext 创建 bean 对象。

两者对比:

  • BeanFactory :延迟注入(使用到某个 bean 的时候才会注入),相比于ApplicationContext 来说会占用更少的内存,程序启动速度更快。
  • ApplicationContext :容器启动的时候,不管你用没用到,一次性创建所有 bean 。BeanFactory 仅提供了最基本的依赖注入支持,ApplicationContext 扩展了 BeanFactory ,除了有BeanFactory的功能还有额外更多功能,所以一般开发人员使用ApplicationContext会更多。

ApplicationContext 的三个实现类:

  1. ClassPathXmlApplication:把上下文文件当成类路径资源。
  2. FileSystemXmlApplication:从文件系统中的 XML 文件载入上下文定义信息。
  3. XmlWebApplicationContext:从 Web 系统中的 XML 文件载入上下文定义信息。

Example:

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.FileSystemXmlApplicationContext;

public class App {
public static void main(String[] args) {
ApplicationContext context = new FileSystemXmlApplicationContext(
"C:/work/IOC Containers/springframework.applicationcontext/src/main/resources/bean-factory-config.xml");

HelloApplicationContext obj = (HelloApplicationContext) context.getBean("helloApplicationContext");
obj.getMsg();
}
}

# 单例设计模式

在我们的系统中,有一些对象其实我们只需要一个,比如说:线程池、缓存、对话框、注册表、日志对象、充当打印机、显卡等设备驱动程序的对象。事实上,这一类对象只能有一个实例,如果制造出多个实例就可能会导致一些问题的产生,比如:程序的行为异常、资源使用过量、或者不一致性的结果。

使用单例模式的好处 :

  • 对于频繁使用的对象,可以省略创建对象所花费的时间,这对于那些重量级对象而言,是非常可观的一笔系统开销;
  • 由于 new 操作的次数减少,因而对系统内存的使用频率也会降低,这将减轻 GC 压力,缩短 GC 停顿时间。

Spring 中 bean 的默认作用域就是 singleton(单例)的。 除了 singleton 作用域,Spring 中 bean 还有下面几种作用域:

  • prototype : 每次获取都会创建一个新的 bean 实例。也就是说,连续 getBean() 两次,得到的是不同的 Bean 实例。
  • request (仅 Web 应用可用): 每一次 HTTP 请求都会产生一个新的 bean(请求 bean),该 bean 仅在当前 HTTP request 内有效。
  • session (仅 Web 应用可用) : 每一次来自新 session 的 HTTP 请求都会产生一个新的 bean(会话 bean),该 bean 仅在当前 HTTP session 内有效。
  • application/global-session (仅 Web 应用可用): 每个 Web 应用在启动时创建一个 Bean(应用 Bean),,该 bean 仅在当前应用启动时间内有效。
  • websocket (仅 Web 应用可用):每一次 WebSocket 会话产生一个新的 bean。

Spring 通过 ConcurrentHashMap 实现单例注册表的特殊方式实现单例模式。

Spring 实现单例的核心代码如下:

// 通过 ConcurrentHashMap(线程安全) 实现单例注册表
private final Map<String, Object> singletonObjects = new ConcurrentHashMap<String, Object>(64);

public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
Assert.notNull(beanName, "'beanName' must not be null");
synchronized (this.singletonObjects) {
// 检查缓存中是否存在实例
Object singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
//...省略了很多代码
try {
singletonObject = singletonFactory.getObject();
}
//...省略了很多代码
// 如果实例对象在不存在,我们注册到单例注册表中。
addSingleton(beanName, singletonObject);
}
return (singletonObject != NULL_OBJECT ? singletonObject : null);
}
}
//将对象添加到单例注册表
protected void addSingleton(String beanName, Object singletonObject) {
synchronized (this.singletonObjects) {
this.singletonObjects.put(beanName, (singletonObject != null ? singletonObject : NULL_OBJECT));

}
}
}

单例 Bean 存在线程安全问题吗?

大部分时候我们并没有在项目中使用多线程,所以很少有人会关注这个问题。单例 Bean 存在线程问题,主要是因为当多个线程操作同一个对象的时候是存在资源竞争的。

常见的有两种解决办法:

  1. 在 Bean 中尽量避免定义可变的成员变量。
  2. 在类中定义一个 ThreadLocal 成员变量,将需要的可变成员变量保存在 ThreadLocal 中(推荐的一种方式)。

不过,大部分 Bean 实际都是无状态(没有实例变量)的(比如 Dao、Service),这种情况下, Bean 是线程安全的。

# 代理设计模式

# 代理模式在 AOP 中的应用

AOP(Aspect-Oriented Programming,面向切面编程) 能够将那些与业务无关,却为业务模块所共同调用的逻辑或责任(例如事务处理、日志管理、权限控制等)封装起来,便于减少系统的重复代码,降低模块间的耦合度,并有利于未来的可拓展性和可维护性。

Spring AOP 就是基于动态代理的,如果要代理的对象,实现了某个接口,那么 Spring AOP 会使用 JDK Proxy 去创建代理对象,而对于没有实现接口的对象,就无法使用 JDK Proxy 去进行代理了,这时候 Spring AOP 会使用 Cglib 生成一个被代理对象的子类来作为代理,如下图所示:

SpringAOPProcess

当然,你也可以使用 AspectJ ,Spring AOP 已经集成了 AspectJ ,AspectJ 应该算的上是 Java 生态系统中最完整的 AOP 框架了。

使用 AOP 之后我们可以把一些通用功能抽象出来,在需要用到的地方直接使用即可,这样大大简化了代码量。我们需要增加新功能时也方便,这样也提高了系统扩展性。日志功能、事务管理等等场景都用到了 AOP 。

# Spring AOP 和 AspectJ AOP 有什么区别?

Spring AOP 属于运行时增强,而 AspectJ 是编译时增强。 Spring AOP 基于代理(Proxying),而 AspectJ 基于字节码操作(Bytecode Manipulation)。

Spring AOP 已经集成了 AspectJ ,AspectJ 应该算的上是 Java 生态系统中最完整的 AOP 框架了。AspectJ 相比于 Spring AOP 功能更加强大,但是 Spring AOP 相对来说更简单,

如果我们的切面比较少,那么两者性能差异不大。但是,当切面太多的话,最好选择 AspectJ ,它比 Spring AOP 快很多。

# 模板方法

模板方法模式是一种行为设计模式,它定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。 模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤的实现方式。

public abstract class Template {
//这是我们的模板方法
public final void TemplateMethod(){
PrimitiveOperation1();
PrimitiveOperation2();
PrimitiveOperation3();
}

protected void PrimitiveOperation1(){
//当前类实现
}

//被子类实现的方法
protected abstract void PrimitiveOperation2();
protected abstract void PrimitiveOperation3();

}
public class TemplateImpl extends Template {

@Override
public void PrimitiveOperation2() {
//当前类实现
}

@Override
public void PrimitiveOperation3() {
//当前类实现
}
}

Spring 中 JdbcTemplateHibernateTemplate 等以 Template 结尾的对数据库操作的类,它们就使用到了模板模式。一般情况下,我们都是使用继承的方式来实现模板模式,但是 Spring 并没有使用这种方式,而是使用 Callback 模式与模板方法模式配合,既达到了代码复用的效果,同时增加了灵活性。

# 观察者模式

观察者模式是一种对象行为型模式。它表示的是一种对象与对象之间具有依赖关系,当一个对象发生改变的时候,这个对象所依赖的对象也会做出反应。Spring 事件驱动模型就是观察者模式很经典的一个应用。Spring 事件驱动模型非常有用,在很多场景都可以解耦我们的代码。比如我们每次添加商品的时候都需要重新更新商品索引,这个时候就可以利用观察者模式来解决这个问题。

# Spring 事件驱动模型中的三种角色

# 事件角色

ApplicationEvent (org.springframework.context包下)充当事件的角色,这是一个抽象类,它继承了java.util.EventObject并实现了 java.io.Serializable接口。

Spring 中默认存在以下事件,他们都是对 ApplicationContextEvent 的实现(继承自ApplicationContextEvent):

  • ContextStartedEventApplicationContext 启动后触发的事件;
  • ContextStoppedEventApplicationContext 停止后触发的事件;
  • ContextRefreshedEventApplicationContext 初始化或刷新完成后触发的事件;
  • ContextClosedEventApplicationContext 关闭后触发的事件。

ApplicationEvent-Subclass

# 事件监听者角色

ApplicationListener 充当了事件监听者角色,它是一个接口,里面只定义了一个 onApplicationEvent()方法来处理ApplicationEventApplicationListener接口类源码如下,可以看出接口定义看出接口中的事件只要实现了 ApplicationEvent就可以了。所以,在 Spring 中我们只要实现 ApplicationListener 接口的 onApplicationEvent() 方法即可完成监听事件

package org.springframework.context;
import java.util.EventListener;
@FunctionalInterface
public interface ApplicationListener<E extends ApplicationEvent> extends EventListener {
void onApplicationEvent(E var1);
}

# 事件发布者角色

ApplicationEventPublisher 充当了事件的发布者,它也是一个接口。

@FunctionalInterface
public interface ApplicationEventPublisher {
default void publishEvent(ApplicationEvent event) {
this.publishEvent((Object)event);
}

void publishEvent(Object var1);
}

ApplicationEventPublisher 接口的publishEvent()这个方法在AbstractApplicationContext类中被实现,阅读这个方法的实现,你会发现实际上事件真正是通过ApplicationEventMulticaster来广播出去的。具体内容过多,就不在这里分析了,后面可能会单独写一篇文章提到。

# Spring 的事件流程总结

  1. 定义一个事件: 实现一个继承自 ApplicationEvent,并且写相应的构造函数;
  2. 定义一个事件监听者:实现 ApplicationListener 接口,重写 onApplicationEvent() 方法;
  3. 使用事件发布者发布消息: 可以通过 ApplicationEventPublisherpublishEvent() 方法发布消息。

Example:

// 定义一个事件,继承自ApplicationEvent并且写相应的构造函数
public class DemoEvent extends ApplicationEvent{
private static final long serialVersionUID = 1L;

private String message;

public DemoEvent(Object source,String message){
super(source);
this.message = message;
}

public String getMessage() {
return message;
}


// 定义一个事件监听者,实现ApplicationListener接口,重写 onApplicationEvent() 方法;
@Component
public class DemoListener implements ApplicationListener<DemoEvent>{

//使用onApplicationEvent接收消息
@Override
public void onApplicationEvent(DemoEvent event) {
String msg = event.getMessage();
System.out.println("接收到的信息是:"+msg);
}

}
// 发布事件,可以通过ApplicationEventPublisher 的 publishEvent() 方法发布消息。
@Component
public class DemoPublisher {

@Autowired
ApplicationContext applicationContext;

public void publish(String message){
//发布事件
applicationContext.publishEvent(new DemoEvent(this, message));
}
}

当调用 DemoPublisherpublish() 方法的时候,比如 demoPublisher.publish("你好") ,控制台就会打印出:接收到的信息是:你好

# 适配器模式

适配器模式(Adapter Pattern) 将一个接口转换成客户希望的另一个接口,适配器模式使接口不兼容的那些类可以一起工作。

# Spring AOP 中的适配器模式

我们知道 Spring AOP 的实现是基于代理模式,但是 Spring AOP 的增强或通知(Advice)使用到了适配器模式,与之相关的接口是AdvisorAdapter

Advice 常用的类型有:BeforeAdvice(目标方法调用前,前置通知)、AfterAdvice(目标方法调用后,后置通知)、AfterReturningAdvice(目标方法执行结束后,return 之前)等等。每个类型 Advice(通知)都有对应的拦截器:MethodBeforeAdviceInterceptorAfterReturningAdviceInterceptorThrowsAdviceInterceptor 等等。

Spring 预定义的通知要通过对应的适配器,适配成 MethodInterceptor 接口(方法拦截器)类型的对象(如:MethodBeforeAdviceAdapter 通过调用 getInterceptor 方法,将 MethodBeforeAdvice 适配成 MethodBeforeAdviceInterceptor )。

# Spring MVC 中的适配器模式

在 Spring MVC 中,DispatcherServlet 根据请求信息调用 HandlerMapping,解析请求对应的 Handler。解析到对应的 Handler(也就是我们平常说的 Controller 控制器)后,开始由HandlerAdapter 适配器处理。HandlerAdapter 作为期望接口,具体的适配器实现类用于对目标类进行适配,Controller 作为需要适配的类。

为什么要在 Spring MVC 中使用适配器模式?

Spring MVC 中的 Controller 种类众多,不同类型的 Controller 通过不同的方法来对请求进行处理。如果不利用适配器模式的话,DispatcherServlet 直接获取对应类型的 Controller,需要的自行来判断,像下面这段代码一样:

if(mappedHandler.getHandler() instanceof MultiActionController){
((MultiActionController)mappedHandler.getHandler()).xxx
}else if(mappedHandler.getHandler() instanceof XXX){
...
}else if(...){
...
}

假如我们再增加一个 Controller类型就要在上面代码中再加入一行 判断语句,这种形式就使得程序难以维护,也违反了设计模式中的开闭原则 – 对扩展开放,对修改关闭。

# 装饰者模式

装饰者模式可以动态地给对象添加一些额外的属性或行为。相比于使用继承,装饰者模式更加灵活。简单点儿说就是当我们需要修改原有的功能,但我们又不愿直接去修改原有的代码时,设计一个 Decorator 套在原有代码外面。其实在 JDK 中就有很多地方用到了装饰者模式,比如 InputStream家族,InputStream 类下有 FileInputStream (读取文件)、BufferedInputStream (增加缓存,使读取文件速度大大提升)等子类都在不修改InputStream 代码的情况下扩展了它的功能。

装饰者模式示意图

Spring 中配置 DataSource 的时候,DataSource 可能是不同的数据库和数据源。我们能否根据客户的需求在少修改原有类的代码下动态切换不同的数据源?这个时候就要用到装饰者模式(这一点我自己还没太理解具体原理)。Spring 中用到的包装器模式在类名上含有 Wrapper或者 Decorator。这些类基本上都是动态地给一个对象添加一些额外的职责

# 总结

Spring 框架中用到了哪些设计模式?

  • 工厂设计模式 : Spring 使用工厂模式通过 BeanFactoryApplicationContext 创建 bean 对象。
  • 代理设计模式 : Spring AOP 功能的实现。
  • 单例设计模式 : Spring 中的 Bean 默认都是单例的。
  • 模板方法模式 : Spring 中 jdbcTemplatehibernateTemplate 等以 Template 结尾的对数据库操作的类,它们就使用到了模板模式。
  • 包装器设计模式 : 我们的项目需要连接多个数据库,而且不同的客户在每次访问中根据需要会去访问不同的数据库。这种模式让我们可以根据客户的需求能够动态切换不同的数据源。
  • 观察者模式: Spring 事件驱动模型就是观察者模式很经典的一个应用。
  • 适配器模式 :Spring AOP 的增强或通知(Advice)使用到了适配器模式、spring MVC 中也是用到了适配器模式适配Controller
  • ……

# 参考


著作权归所有 原文链接:https://javaguide.cn/system-design/framework/spring/spring-design-patterns-summary.html